Os cientistas usam lasers poderosos para criar explosões solares em miniatura para estudar o processo de reconexão magnética.
Os cientistas usaram doze feixes de laser de alta energia para simular mini explosões solares, a fim de investigar os mecanismos subjacentes da reconexão magnética, um fenômeno astronômico fundamental.
Ao contrário da crença popular, o universo não é vazio. Apesar da frase “o vasto vazio do espaço”, o universo é preenchido com vários materiais, como partículas carregadas, gases e raios cósmicos. Embora os corpos celestes possam parecer raros, o universo está fervilhando de atividade.
Um desses impulsos de partículas e energia através do espaço é um fenômeno chamado reconexão magnética. Como o nome sugere, a reconexão magnética ocorre quando dois campos magnéticos paralelos – como em dois campos magnéticos viajando em direções opostas – colidem, quebram e realinham. Embora pareça inofensivo, está longe de ser calmo.
Este fenômeno é visto em todo o universo. Em casa, você pode vê-los em explosões solares ou na magnetosfera da Terra. explica Taichi Morita, professor assistente da Universidade de Universidade de Kyushu Faculdade de Ciências da Engenharia e o primeiro autor do estudo. “Na verdade, a aurora boreal se forma como resultado de partículas carregadas sendo ejetadas da reconexão magnética no campo magnético da Terra.”
No entanto, embora ocorram comumente, muitos dos mecanismos subjacentes a esses fenômenos são um mistério. Estudos estão sendo conduzidos, como em[{” attribute=””>NASA’s Magnetospheric Multiscale Mission, where magnetic reconnections are studied in real-time by satellites sent into Earth’s magnetosphere. However, things such as the speed of reconnection or how energy from the magnetic field is converted and distributed to the particles in the plasma remain unexplained.
An alternative to sending satellites into space is to use lasers and artificially generate plasma arcs that produce magnetic reconnections. However, without suitable laser strength, the generated plasma is too small and unstable to study the phenomena accurately.
“One facility that has the required power is Osaka University’s Institute for Laser Engineering and their Gekko XII laser. It’s a massive 12-beam, high-powered laser that can generate plasma stable enough for us to study,” explains Morita. “Studying astrophysical phenomena using high-energy lasers is called ‘laser astrophysics experiments,’ and it has been a developing methodology in recent years.”
In their experiments, reported in Physical Review E, the high-power lasers were used to generate two plasma fields with anti-parallel magnetic fields. The team then focused a low-energy laser into the center of the plasma where the magnetic fields would meet and where magnetic reconnection would theoretically occur.
“We are essentially recreating the dynamics and conditions of a solar flare. Nonetheless, by analyzing how the light from that low-energy laser scatters, we can measure all sorts of parameters from plasma temperature, velocity, ion valence, current, and plasma flow velocity,” continues Morita.
One of their key findings was recording the appearance and disappearance of electrical currents where the magnetic fields met, indicating magnetic reconnection. Additionally, they were able to collect data on the acceleration and heating of the plasma.
The team plans on continuing their analysis and hopes that these types of ‘laser astrophysics experiments’ will be more readily used as an alternative or complementary way to investigate astrophysical phenomena.
“This method can be used to study all sorts of things like astrophysical shockwaves, cosmic-ray acceleration, and magnetic turbulence. Many of these phenomena can damage and disrupt electrical devices and the human body,” concludes Morita. “So, if we ever want to be a spacefaring race, we must work to understand these common cosmic events.”
Reference: “Detection of current-sheet and bipolar ion flows in a self-generated antiparallel magnetic field of laser-produced plasmas for magnetic reconnection research” by T. Morita, T. Kojima, S. Matsuo, S. Matsukiyo, S. Isayama, R. Yamazaki, S. J. Tanaka, K. Aihara, Y. Sato, J. Shiota, Y. Pan, K. Tomita, T. Takezaki, Y. Kuramitsu, K. Sakai, S. Egashira, H. Ishihara, O. Kuramoto, Y. Matsumoto, K. Maeda and Y. Sakawa, 10 November 2022, Physical Review E.
DOI: 10.1103/PhysRevE.106.055207
The study was funded by the Japan Society for the Promotion of Science.
“Ávido fanático pela internet. Futuro ídolo adolescente. Perito sem remorso em café. Comunicador. Pioneiro de viagens. Geek zumbi freelance.”